

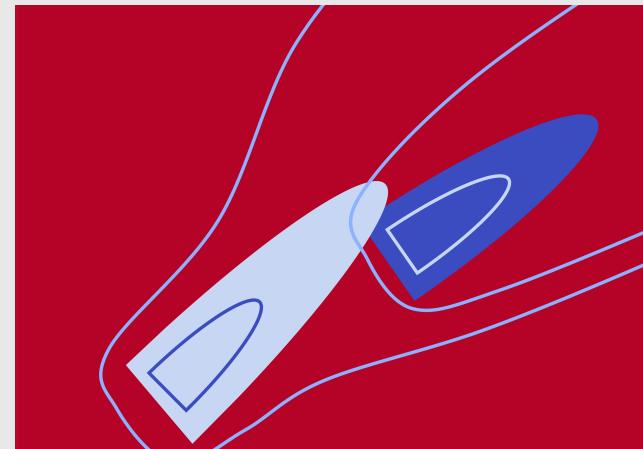
FLORIS

Michael (Misha) Sinner

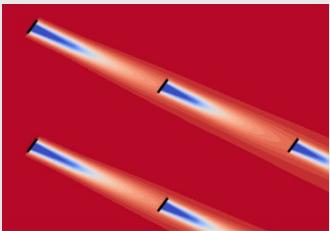
NAWEA/WindTech · October 2025

Wake models

Turbine models

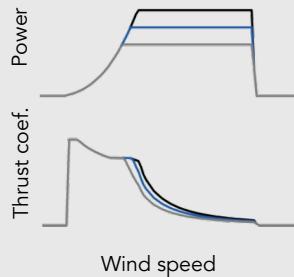

Wind data

Design tools



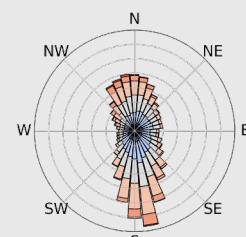
FLORIS

<https://github.com/NREL/floris/>


Wake models

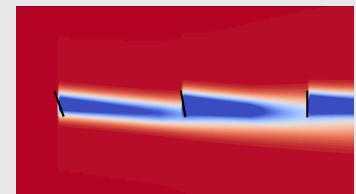
Flow velocity deficit models

- Jensen
- Gauss-Curl Hybrid
- Cumulative Curl
- TurbOPark
- Empirical Gaussian


Turbine models

Actuator disks with power, thrust coefficient curves

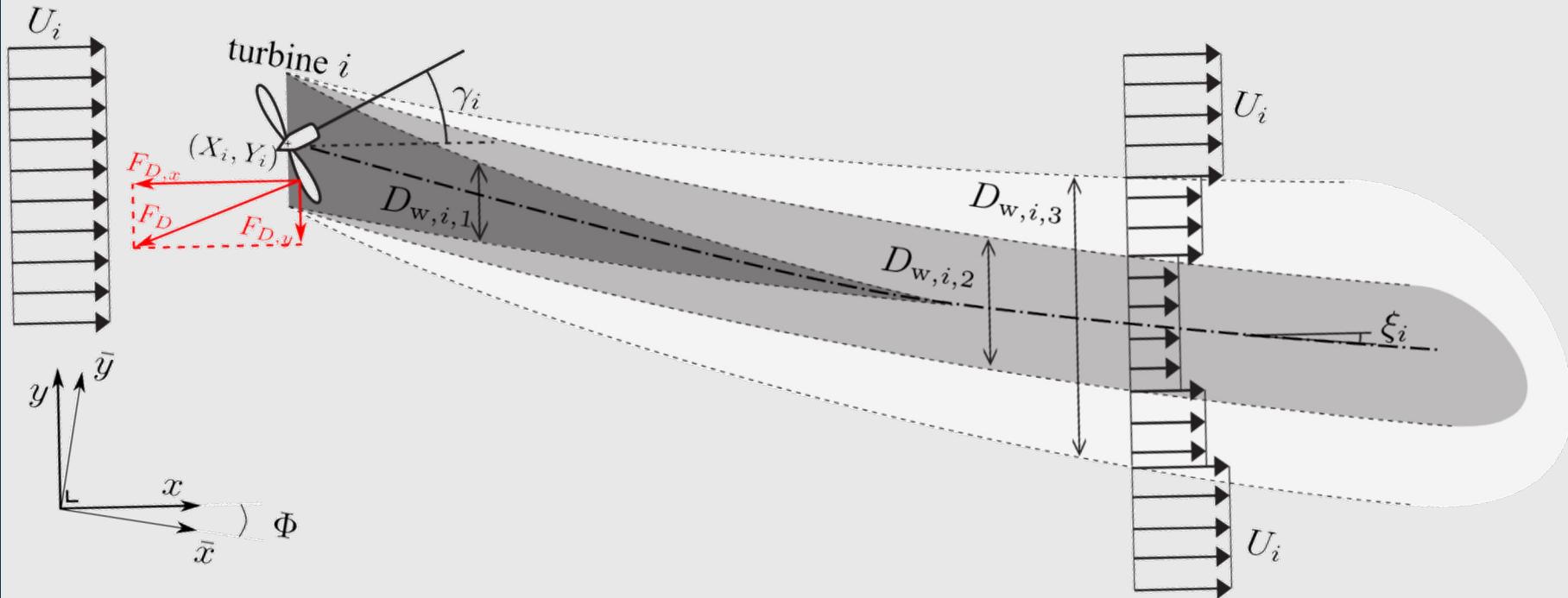
- Yaw misaligned
- Derating
- Peak shaving
- Active wake mixing
- Shut off


Wind data

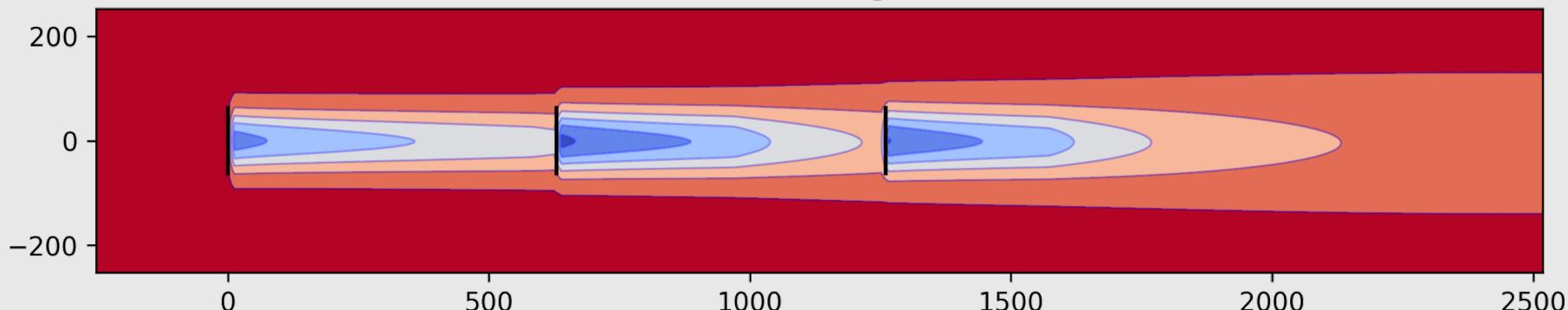
Vectorized input wind conditions

- Wind rose
- Time series
- Flow heterogeneity
- Data readers

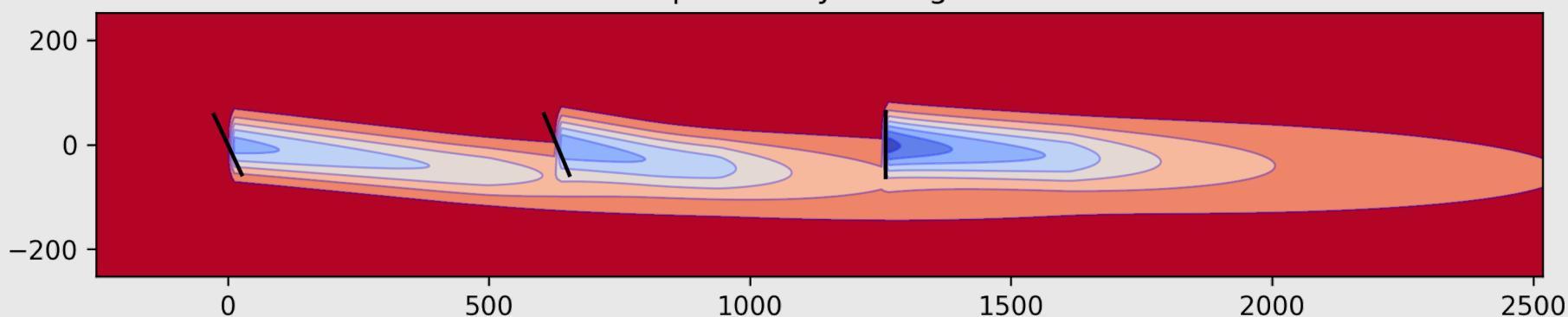
Design tools


Optimization tools to help in the design and control of wind farms

- Yaw optimization
- Layout optimization


FLORIS has many use cases

- Originally developed to simulate wake steering
- Controller development for experimental campaigns
- Tools added to perform layout design
- Integration into hybrid plant simulation and design tools
- Analysis techniques developed into standalone repositories (FLASC)


What is wake steering?

Turbines aligned

Optimized yaw angles

FLORIS software

FLORIS is available on github.com

 [NREL / floris](#) Public

 Notifications

 Fork 177

 Star 253

 Code Issues 48 Pull requests 17 Discussions Actions Projects 3 Security Insights

 main

 7 Branches

 60 Tags

 Go to file

 Code

About

A controls-oriented engineering wake model.

 nrel.github.io/floris

 Readme

 BSD-3-Clause license

 Contributing

 Activity

 Custom properties

 253 stars

 23 watching

 177 forks

Report repository

Releases 51

 v4.5 Latest
last week

 + 50 releases

Contributors 42

misi9170	Merge pull request #1144 from NREL/develop		6959af0 · last week	2,190 Commits
.github	Update list of locations for updating version number.		5 months ago	
benchmarks	Add automatic benchmarking (#1062)		7 months ago	
docs	Fix a couple of documentation bugs introduced in #996		last week	
examples	[BUGFIX] Improve handling of multidimensional turbine c...		last week	
floris	[BUGFIX] Improve handling of multidimensional turbine c...		last week	
profiling	Rename floris.simulation, floris.tools to floris.core, floris (...		last year	
tests	[BUGFIX] Improve handling of multidimensional turbine c...		last week	
.codecov.yml	Add specific patch settings.		last year	
.gitignore	Add test for v3_to_v4 input file converters (#880)		last year	
.pre-commit-config.yaml	Update ruff versions (#1063)		7 months ago	
CONTRIBUTING.md	Fix links to invalid documentation pages		2 years ago	
LICENSE.txt	Change from Apache to BSD 3-clause license (#810)		last year	
README.md	Update version to 4.5		last week	

... and can be readily cloned

```
> git clone https://github.com/NREL/floris  
> pip install -e floris
```

or installed directly from PyPI

```
> pip install floris
```


python

Open-source high-level programming language

conda

Software environment manager

pip

Software package manager

git

Text-based software version control

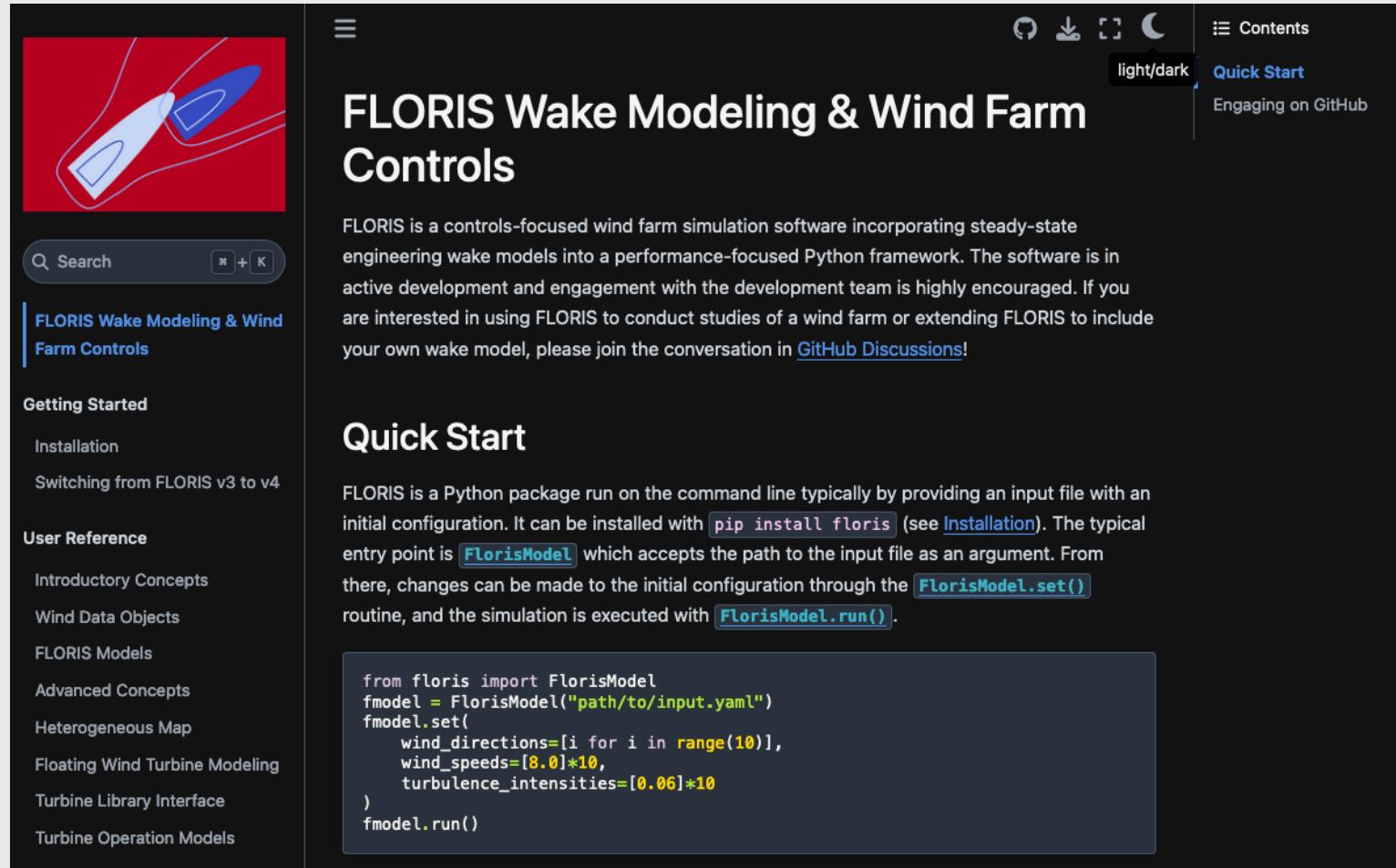
github

Online location for code sharing a cooperative programming

FLORIS follows a typical python package structure

FLORIS follows a typical python package structure

```
✓ floris
  > core                                     ← Modeling code
  > turbine_library                         ← Inbuilt wind turbines
  > optimization                            ← Layout, yaw optimizers
  floris_model.py                           ← Main user interface
  wind_data.py                             ← Wind input tools
  flow_visualization.py                    ← Visualization tools
  layout_visualization.py
...
...
```


FLORIS follows a typical python package structure

```
✓ floris
  > core                                     ← Modeling code
  > turbine_library                         ← Inbuilt wind turbines
  > optimization                            ← Layout, yaw optimizers
  floris_model.py                           ← Main user interface
  wind_data.py                             ← Wind input tools
  flow_visualization.py                    ← Visualization tools
  layout_visualization.py
...
...
```

FLORIS documentation

Documentation at nrel.github.io/floris/

The screenshot shows a dark-themed documentation page for FLORIS. At the top right are icons for search, download, and navigation, along with a 'light/dark' theme switch. The top navigation bar includes 'Contents', 'Quick Start' (which is highlighted in blue), and 'Engaging on GitHub'. The main content area features a large image of a wind turbine wake on the left and a search bar with a 'K' icon on the right. The title 'FLORIS Wake Modeling & Wind Farm Controls' is prominently displayed. Below the title is a paragraph describing FLORIS as a controls-focused wind farm simulation software. A 'Quick Start' section follows, with a sub-section titled 'Quick Start' and a code block showing how to run the software. The sidebar on the left contains a navigation menu with links to various documentation sections.

FLORIS Wake Modeling & Wind Farm Controls

FLORIS is a controls-focused wind farm simulation software incorporating steady-state engineering wake models into a performance-focused Python framework. The software is in active development and engagement with the development team is highly encouraged. If you are interested in using FLORIS to conduct studies of a wind farm or extending FLORIS to include your own wake model, please join the conversation in [GitHub Discussions](#)!

Quick Start

FLORIS is a Python package run on the command line typically by providing an input file with an initial configuration. It can be installed with `pip install floris` (see [Installation](#)). The typical entry point is `FlorisModel` which accepts the path to the input file as an argument. From there, changes can be made to the initial configuration through the `FlorisModel.set()` routine, and the simulation is executed with `FlorisModel.run()`.

```
from floris import FlorisModel
fmodel = FlorisModel("path/to/input.yaml")
fmodel.set(
    wind_directions=[i for i in range(10)],
    wind_speeds=[8.0]*10,
    turbulence_intensities=[0.06]*10
)
fmodel.run()
```

Contents

Quick Start

Engaging on GitHub

Search

FLORIS Wake Modeling & Wind Farm Controls

Getting Started

- Installation
- Switching from FLORIS v3 to v4

User Reference

- Introductory Concepts
- Wind Data Objects
- FLORIS Models
- Advanced Concepts
- Heterogeneous Map
- Floating Wind Turbine Modeling
- Turbine Library Interface
- Turbine Operation Models

Installation

FLORIS can be installed by downloading the source code or via the PyPi package manager with `pip`. The following sections detail how download and install FLORIS for each use case.

Requirements

FLORIS is intended to be used with Python 3.6 and up, and it is highly recommended that users work within a virtual environment for both working with and working on FLORIS, to maintain a clean and sandboxed environment. The simplest way to get started with virtual environments is through `conda`.

Installing into a Python environment that contains a previous version of FLORIS may cause conflicts. If you intend to use `pyOptSparse` with FLORIS, it is recommended to install that package first before installing FLORIS.

Note
If upgrading, it is highly recommended to install FLORIS v4 into a new virtual environment.

Pip

The simplest method is with `pip` by using this command:

```
pip install floris
```

Source Code Installation

Developers and anyone who intends to inspect the source code or wants to run examples can install FLORIS by downloading the git repository from GitHub with `git` and use `pip` to locally install it. The following commands in a terminal or shell will download and install FLORIS.

```
# Download the source code from the 'main' branch
git clone -b main https://github.com/NREL/floris.git

# If using conda, be sure to activate your environment prior to installing
# conda activate <env name>

# If using pyOptSparse, install it first
conda install -c conda-forge pyoptsparse

# Install FLORIS
pip install -e floris
```

Example 1: Opening FLORIS and Computing Power

Wake Models

A wake model in FLORIS is made up of four components that together constitute a wake. At minimum, the velocity deficit profile behind a wind turbine is required. For most models, an additional wake deflection model is included to model the effect of yaw misalignment. Turbulence models are also available to couple with the deficit and deflection components. Finally, methods for combining wakes with the rest of the flow field are available.

Computationally, the solver algorithm and grid-type supported by each wake model can also be considered as part of the model itself. As shown in the diagram below, the mathematical formulations can be considered as the main components of the model. These are typically associated directly to each other and in some cases they are bundled together into a single mathematical formulation. The solver algorithm and grid type are associated to the math formulation, but they are typically more generic.

FLORIS Wake Model

```
graph LR
    Deficit[Deficit] --> Deflection[Deflection]
    Deflection --> Turbulence[Turbulence]
    Turbulence --> Velocity[Velocity]
    Velocity --> Solver[Solver]
    Solver --> Grid[Grid]
```

The models in FLORIS are typically developed as a combination of velocity deficit and wake deflection models, and some also have custom turbulence and combination models. The settings below use the typical combinations except where indicated. The specific settings can be seen in the corresponding input files found in the source code dropdowns.

```
import numpy as np
import matplotlib.pyplot as plt
from floris import FlorisModel
import floris.flow.visualization as flowviz
import floris.layout.visualization as layoutviz

NREL5MW_D = 126.0

def model_layout(inputfile, include_wake_deflection=True):
    if include_wake_deflection:
        yaw_angles = np.zeros((1, 2))
    if include_turbulence:
        yaw_angles = np.zeros((1, 2))
    model = FlorisModel(inputfile)
    model.layout()
    layout_xmp = np.array([0.0, 2*NREL5MW_D])
    layout_ymp = np.array([0.0, 2*NREL5MW_D])
    yaw_angles=yaw_angles
    layout_plane = flowviz.calculate_horizontal_plane(height=40)
    flowviz.plot_plane(layout_plane, layout_xmp, layout_ymp, yaw_angles=yaw_angles)
    layoutviz.plot_turbine_rotors(model, ax_axes, yaw_angles=yaw_angles)
```

Example: Visualize y cut plane

```
'''Example: Visualize y cut plane
Demonstrate visualizing a plane cut vertically through the flow field along the y axis.
'''

import matplotlib.pyplot as plt
from floris import FlorisModel
from floris.flow.visualization import visualize_y_plane

model = FlorisModel("../inputs/gch.yaml")

# Set a 3 turbine layout with wind direction along the row
model.layout()
model.layout.layout_x=[0, 500, 1000]
model.layout.layout_y=[0, 1000]
model.layout.layout_z=[0, 1000]
model.layout.layout_yaw=[0, 0, 0]
model.layout.layout_turbine_diameter=[100, 100, 100]

# Collect the yplane
y_plane = model.calculate_y_plane(x_resolution=200, z_resolution=100, crossstream_resolution=100)

# Plot the flow field
fig, ax = plt.subplots(figsize=(10, 4))
visualize_y_plane(y_plane, ax=ax, min_speed=0, max_speed=4, label_contours=True, title="Y Cut Plane")
plt.show()
import warnings
warnings.filterwarnings("ignore")
```


Previous Example: Layout Visualizations Next Example: Visualize cross plane

By National Renewable Energy Laboratory
© Copyright 2023.

NREL | 18

Open-source software community

We support and encourage interaction on github

Discussion forum

Discussions

- Wake model**
prithi-gs asked on Dec 8, 2022 in Q&A - **Answered**
8 comments
- How to get the velocity of points at rotor plane but not within the swept area?**
Darry6682 asked 4 days ago in Q&A - **Unanswered**
0 comments
- CubatureGrid design and validation**
rafmudaf started on Apr 18 in **v4 Design Discussion**
2 comments
- Layout optimization in FLORIS**
floris.optimization
Marcodep23 started on Apr 30 in **General**
3 comments
- Crespo-Hernandez turbulence model**
cheoljoon asked last week in Q&A - **Unanswered**
0 comments
- V3 Simulation Boundary Condition Influence**
nrz22 asked 3 weeks ago in Q&A - **Unanswered**
4 comments
- Yaw control under AWC operating model**
clown991 started 2 weeks ago in **General**
0 comments
- flow_field_grid Solver**
Jlewis17 asked on May 1 in Q&A - **Unanswered**
6 comments
- Turbine Turbulence Intensity values**
prithi-gs started on May 10 in **General**
3 comments
- No module named 'floris.tools'**
zkdtxby asked on May 16 in Q&A - **Closed - Unanswered**
0 comments
- Incorrect Wake Visualization**
Nellytaldo asked on May 8 in Q&A - **Unanswered**
4 comments

Issues

Issues

64 Open ✓ 176 Closed

Author	Label	Projects	Milestones	Assignee	Sort
✓ Ishihara Qian	turbulence model				
#1001	opened 10 hours ago by masapasan				
✓ Complete multi-dim code	documentation enhancement examples				
#989	opened 2 weeks ago by paulf81 5 tasks				
✓ Allow "unsetting" non-critical keyword arguments to <code>FlorisModel.set()</code>	enhancement				
#974	opened on Aug 30 by misi9170				
✓ ParallelFlorisModel updated to match FlorisModel API	enhancement				
#971	opened on Aug 22 by paulf81 5 tasks done				
✓ Bug report: Cumulative Curl does not work with the turbine_cubature_grid solver	bug floris.simulation v4				
#970	opened on Aug 22 by Bartbokemeijer				
✓ Bug report: shape mismatch error when evaluating yaw angles with zero-frequency entries in the wind rose	bug floris.simulation v4				
#963	opened on Aug 19 by Bartbokemeijer				
✓ Heterogenous map is sticking when expected behavior would be to remove	bug				
#959	opened on Aug 7 by paulf81				
✓ Bug: Setting the turbine type with a list causes power setpoints to be ignored	bug				
#958	opened on Aug 7 by paulf81				
✓ Issues when running FLORIS 4.1.1					
#951	opened on Jul 26 by misi9170				
✓ Parallelize <code>YawOptimizationScipy</code> and <code>YawOptimizationSR</code> optimize methods across wind speeds/directions					
#944	opened on Jul 12 by achenny				
✓ Allow users to specify whether to use mirror wakes in EmG model	enhancement				
#935	opened on Jul 2 by misi9170				
✓ Memory Deallocation in <code>FlorisModel.run</code> method					
#926	opened on Jun 19 by achenny				
✓ Precise power calculation when running with <code>WindRose</code> objects	enhancement				
#918	opened on Jun 5 by misi9170				
✓ GPU Usage					

Pull requests

Pull requests

18 Open ✓ 474 Closed

Author	Label	Projects	Milestones	Reviews	Assignee	Sort
✓ [BUGFIX]	Improve handling of multidimensional turbine conditions					
#996	opened last week by misi9170 Draft 1 of 3 tasks					
✓ FLORIS v4.2						
#994	opened last week by misi9170 3 of 4 tasks					
✓ Add automatic benchmarking to FLORIS	enhancement					
#992	opened 2 weeks ago by paulf81 3 tasks					
✓ Add <code>op_rose</code> class	enhancement					
#964	opened on Aug 19 by paulf81 Draft 10 tasks					
✓ Improve examples						
#956	opened on Aug 6 by achenny					
✓ Wind direction heterogeneity	new-feature					
#954	opened on Aug 1 by misi9170 Draft 5 of 16 tasks					
✓ Add back in explicit windows and mac testing						
#953	opened on Jul 30 by paulf81 Draft					
✓ Add MIT yaw correction model (3rd pass)						
#924	opened on Jun 18 by jaimelewi1 Draft					
✓ Eddy viscosity wake model	documentation examples floris.simulation in-progress new-feature					
#882	opened on Apr 18 by misi9170 Draft 8 of 9 tasks					
✓ Add example testing TI in engm						
#841	opened on Mar 13 by paulf81 Draft 4 tasks					
✓ Turn misalignment model						
#832	opened on Mar 6 by xamardium Draft					
✓ Enhancement: Add a Dimension Validator for 5-D and 3-D Array Structures						
#763	opened on Dec 12, 2023 by RHammont2 Approved 3 of 3 tasks					
✓ Add infrastructure for vertical-axis wind turbines	floris.simulation new-feature					
#701	opened on Aug 18, 2023 by vallog					
✓ Add super-Gaussian velocity model for vertical-axis wind turbines	floris.simulation new-feature					
#700	opened on Aug 18, 2023 by vallog					
✓ Documentation: Solver Descriptions	documentation on-hold					

Basic FLORIS usage

```
1 import numpy as np
2 from floris import FlorisModel, TimeSeries
3
4 # Load the Floris model
5 fmodel = FlorisModel("inputs/gch.yaml") ← Input file contains wake model parameters and
6 # Set up inflow wind conditions
7 time_series = TimeSeries( ← Wind data objects (TimeSeries, WindRose,
8 ... wind_directions=270 + 30 * np.random.randn(100),
9 ... wind_speeds=8 + 2 * np.random.randn(100),
10 ... turbulence_intensities=0.06 + 0.02 * np.random.randn(100),
11 )
12
13
14 # Set the wind conditions for the model
15 fmodel.set(wind_data=time_series) ← Set inflow conditions, farm layout, control
16 # Run the calculations
17 fmodel.run() ← Execute solve, takes no inputs (replaces
18 # Extract turbine and farm powers
19 turbine_powers = fmodel.get_turbine_powers() / 1000.0 ← calculate_wake())
20 farm_power = fmodel.get_farm_power() / 1000.0 ← Extract outputs after solve
21
22
23
24 print(turbine_powers.shape)
25 print(farm_power.shape)
26
27 # # Output:
28 # (100, 3)
29 # (100, )
```

FlorisModel is the main user interface

```
fm = FlorisModel("inputs/gch.yaml")
```

```
class FlorisModel():
    def __init__():
        ...
```

← Class definition

← “Constructor”

```
    def set():
        ...
```

← Set up the
FLORIS solve

```
    def run():
        ...
```

← Run the FLORIS
wake solver

```
    def get_turbine_powers():
        ...
```

← Access outputs

Symmetry between FlorisModels

FlorisModel

Basic class for running
FLORIS calculations

UncertainFloris
Model

Class for running
calculations under
uncertainty

ParFlorisModel

Class for running
calculations with
parallel computing


```
1 name: GCH
2
3 description: Three turbines using Gauss Curl Hybrid model
4 floris_version: v4
5
6 ✓ logging:
7   ✓ console:
8     ··· enable: true
9     ··· level: WARNING
10  ✓ file:
11    ··· enable: false
12    ··· level: WARNING
13
14 ✓ solver:
15   ··· type: turbine_grid
16   ··· turbine_grid_points: 3
17
18 ✓ farm:
19   ··· layout_x:
20     - 0.0
21     - 630.0
22   ··· layout_y:
23     - 0.0
24     - 0.0
25   ··· turbine_type:
26     - nrel_5MW
27     - iea_10MW
28
29 ✓ flow_field:
30   ··· air_density: 1.225
31   ··· reference_wind_height: 90.0 # Since multiple defined turbines, must s
32   ··· turbulence_intensities:
33     - 0.06
34   ··· wind_directions:
35     - 270.0
36   ··· wind_shear: 0.12
37   ··· wind_speeds:
38     - 8.0
39   ··· wind_veer: 0.0
40
41 ✓ wake:
42   ✓ model_strings:
43     ··· combination_model: sosfs
44     ··· deflection_model: gauss
45     ··· turbulence_model: crespo_hernandez
46     ··· velocity_model: gauss
47
48   ··· enable_secondary_steering: false
49   ··· enable_yaw_added_recovery: false
50   ··· enable_transverse_velocities: false
51   ··· enable_active_wake_mixing: false
52
```

Documentation

Logging

Grid points

Farm details

Inflow details

Wake model selection

Deflection parameters

Deficit parameters

Turbulence parameters

```
53   ··· wake_deflection_parameters:
54     ··· gauss:
55       ··· ad: 0.0
56       ··· alpha: 0.58
57       ··· bd: 0.0
58       ··· beta: 0.077
59       ··· dm: 1.0
60       ··· ka: 0.38
61       ··· kb: 0.004
62     ··· jimenez:
63       ··· ad: 0.0
64       ··· bd: 0.0
65       ··· kd: 0.05
66
67   ··· wake_velocity_parameters:
68     ··· cc:
69       ··· a_s: 0.179367259
70       ··· b_s: 0.0118889215
71       ··· c_s1: 0.0563691592
72       ··· c_s2: 0.13290157
73       ··· a_f: 3.11
74       ··· b_f: -0.68
75       ··· c_f: 2.41
76       ··· alpha_mod: 1.0
77     ··· gauss:
78       ··· alpha: 0.58
79       ··· beta: 0.077
80       ··· ka: 0.38
81       ··· kb: 0.004
82     ··· jensen:
83       ··· we: 0.05
84
85   ··· wake_turbulence_parameters:
86     ··· crespo_hernandez:
87       ··· initial: 0.1
88       ··· constant: 0.5
89       ··· ai: 0.8
90       ··· downstream: -0.32
91
```

Anything can be set dynamically, too!

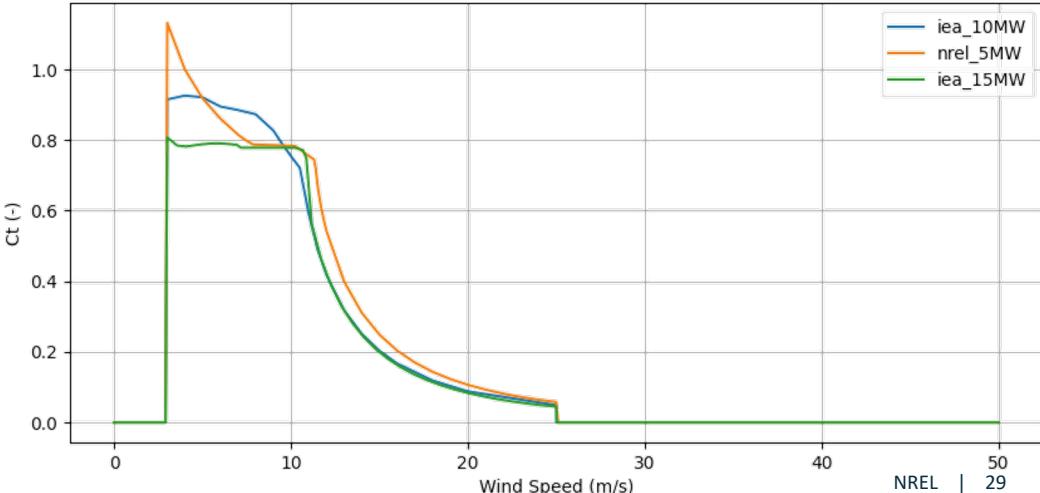
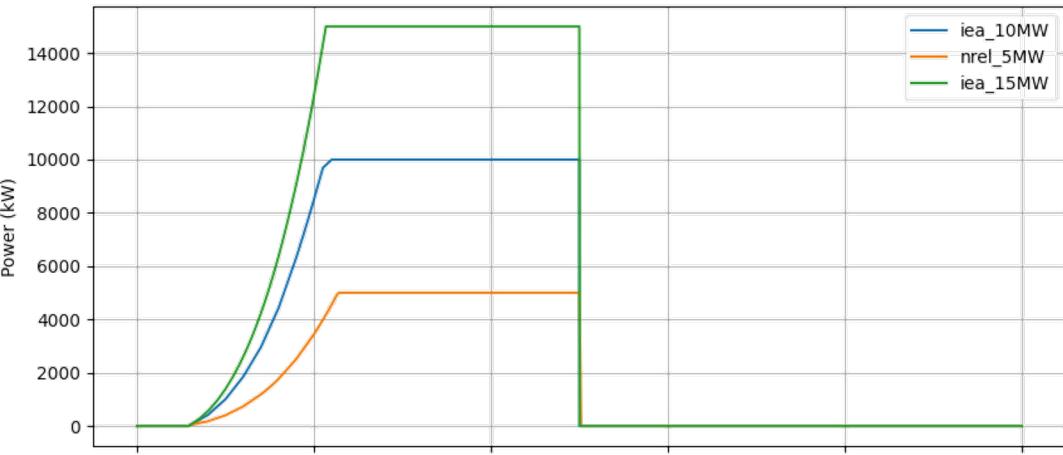
```
1 # Data based on:  
2 # https://github.com/IEAWindTask37/IEA-15-240-RWT/blob/master/  
3 # IEA-15-240-RWT_tabular.xlsx  
4 # Note: Small power variations above rated removed.  
5 # Generator efficiency of 100% used.  
6 turbine_type: 'iea_15MW'  
7 hub_height: 150.0  
8 rotor_diameter: 242.24  
9 TSR: 8.0  
10 operation_model: cosine-loss  
11 power_thrust_table:  
12   - ref_air_density: 1.225  
13   - ref_tilt: 6.0  
14   - cosine_loss_exponent_yaw: 1.88  
15   - cosine_loss_exponent_tilt: 1.88  
16   - helix_a: 1.809  
17   - helix_power_b: 4.828e-03  
18   - helix_power_c: 4.017e-11  
19   - helix_thrust_b: 1.390e-03  
20   - helix_thrust_c: 5.084e-04  
21   power:  
22     - 0.000000  
23     - 0.000000  
24     - 42.733312  
25     - 292.585981  
26     - 607.966543  
27     - 981.097693  
28     - 1401.98084  
29     - 1858.67086  
30     - 2337.575997  
31     - 2824.097302  
32     - 3303.06456  
33     - 3759.432328  
34     - 4178.637714  
35     - 4547.19121  
36     - 4855.342682  
37     - 5091.537139  
38     - 5248.453137  
39     - 5320.793207  
40     - 5335.345498  
41     - 5437.90563  
42     - 5631.253025  
43     - 5920.980626  
44     - 6315.115602  
45     - 6824.470067  
46     - 7462.846389  
47     - 8238.359448  
48     - 9167.96703
```

Documentation

Physical characteristics

Operation model

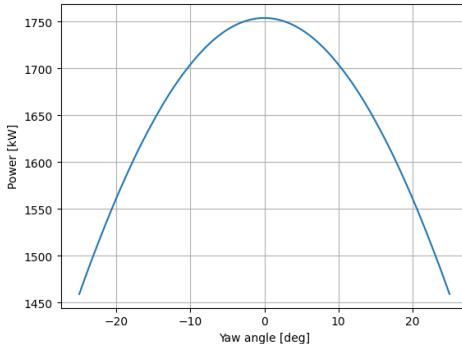
Power/thrust curve metadata



Power/thrust curve definition

Wind turbine models

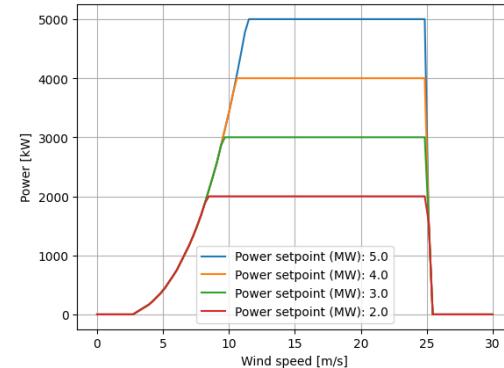
Wind turbines are modeled as actuator disks

- Basic geometric parameters (hub height, rotor diameter)
- Power (kW) and thrust coefficient (-) curves

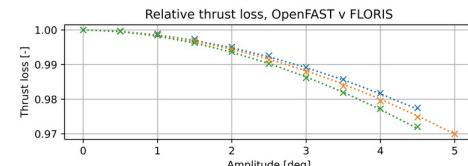
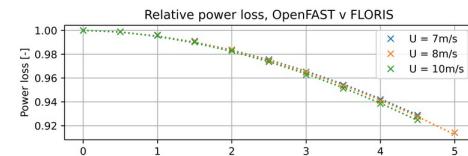


Turbine operation models

Allows flexible definition of the turbine actuator disk and how it operates


Cosine loss

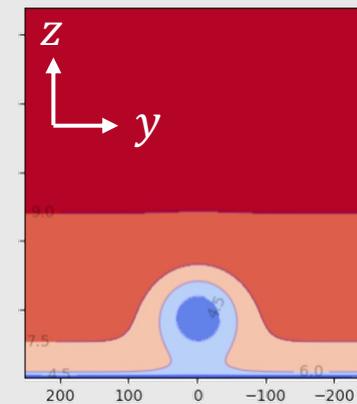
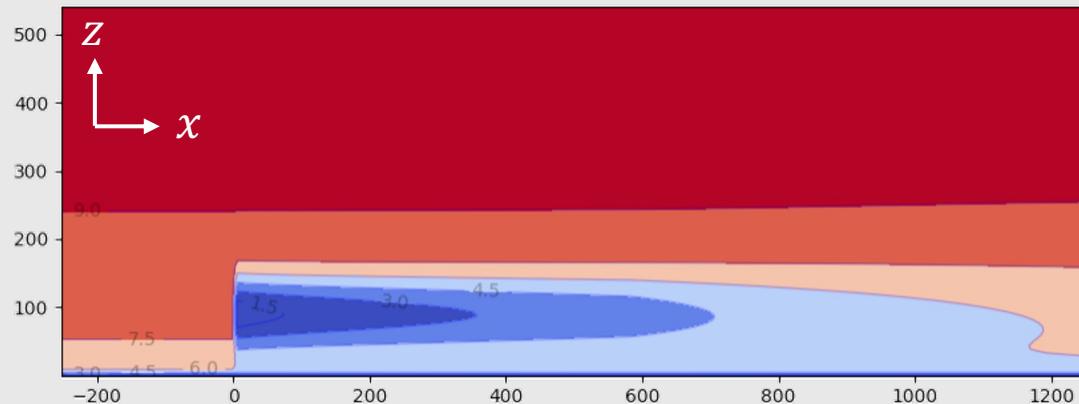
Default, loses power to yaw according to cosine exponential model



Simple derating

Approximate model for how turbines behave in derated operation

Active wake control

Models how turbines perform with Helix wake mixing



Wake modeling

FLORIS uses analytical wake models

$$\delta v = f_{\theta}(x, y, z, |C_T|)$$

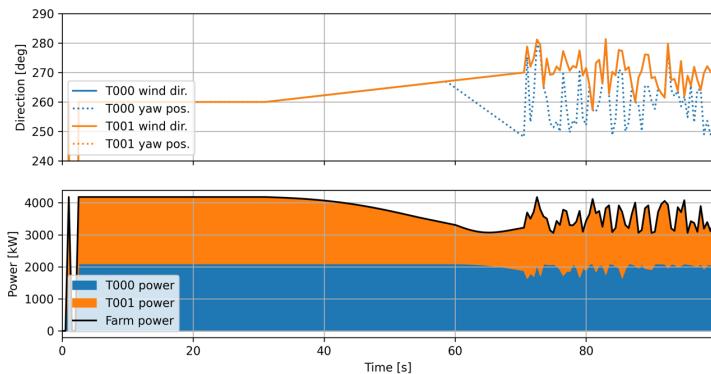
Velocity deficit
Wake shape function
Wake shape parameters
Downstream distance
Radial position
Upstream turbine thrust coefficient

Wake models are broken down into four submodels

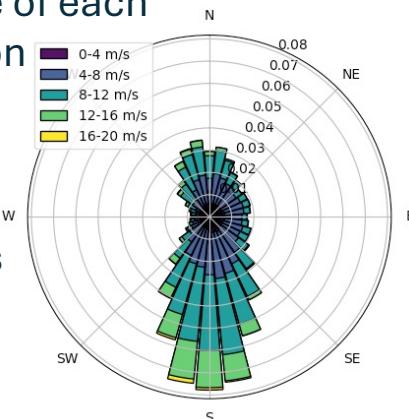
- Velocity deficit model (wake shape)
- Velocity deflection model (wake centerline position)
- Turbulence model (wake-induced turbulence)
- Wake combination model (wake superposition)

Various deficit models are implemented in FLORIS

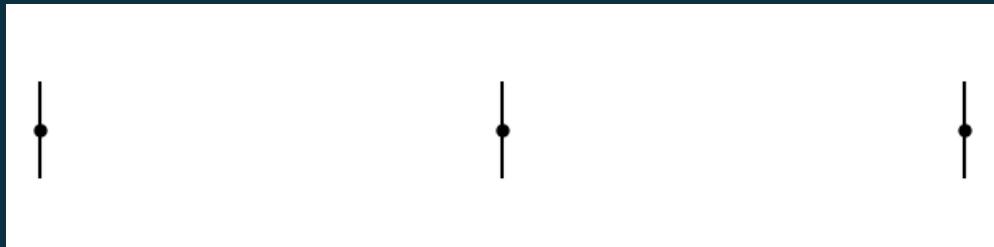
Model	Pros	Cons
Jensen	Simple top-hat shape, fast execution	Non-smooth, low accuracy
Gaussian	Good all purpose	Poorer performance for large arrays
GCH	Wake steering effects	Poor for large arrays, slowish
Cumulative curl	AEP calculations, large or small arrays	Slower execution
TurbOPark	Large arrays, offshore, fast execution	Poor performance in small arrays, onshore
Empirical Gaussian	Good performance across board, fast execution	More complex to set up


Input / output characterization

WindData objects

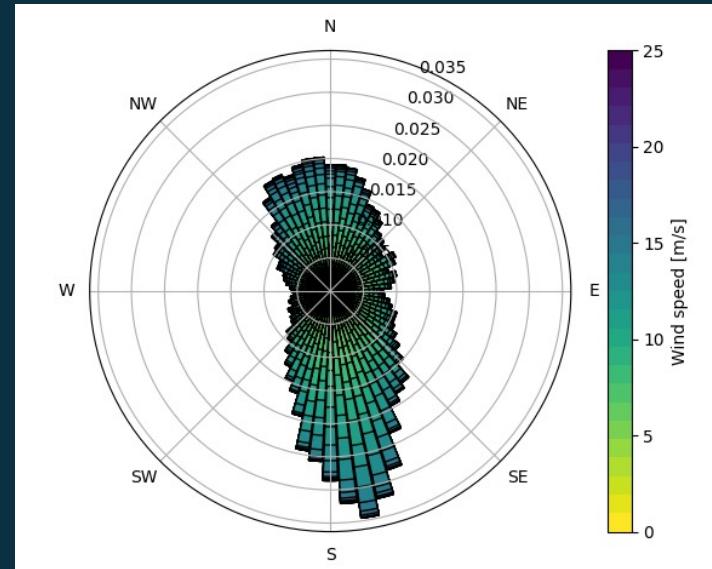

TimeSeries

- For running a series of unique wind conditions
- Useful for playing through observations



WindRose

- For running over a grid of wind speed, wind direction combinations
- Specify frequency of occurrence of each combination
- Useful for AEP evaluations


Vectorized computations for many conditions at once

3 wind turbines

1327 wind conditions to evaluate

Run time: 0.16 seconds on my laptop

Based on examples/006_get_farm_aep.py

```
AEP = FlorisModel.get_farm_AEP()
```

Once a model has been run, the farm AEP can be computed using inbuilt FLORIS methods which perform a weighted sum:

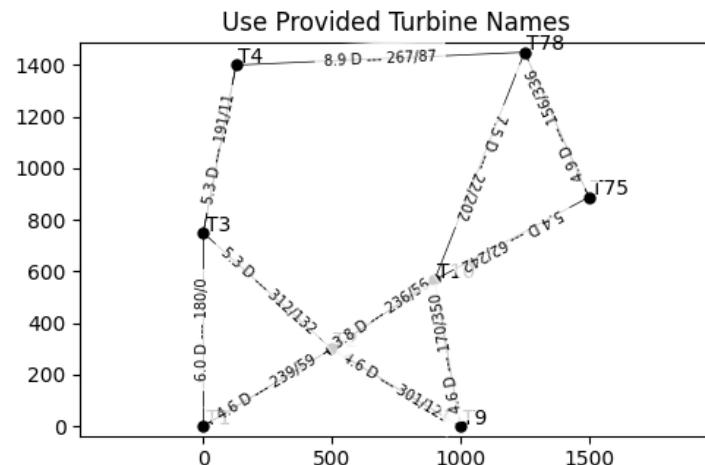
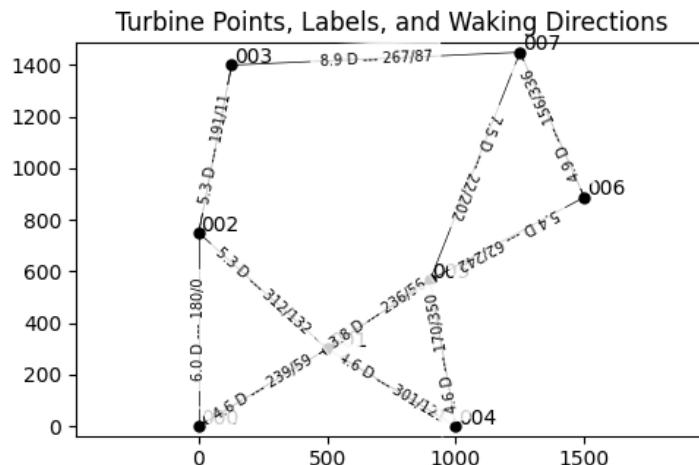
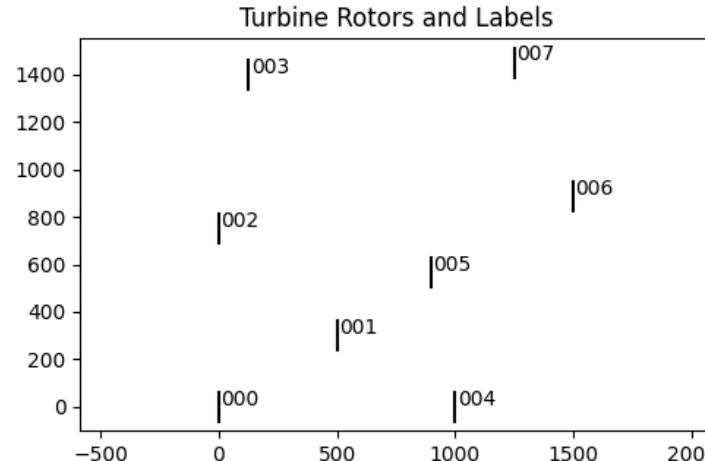
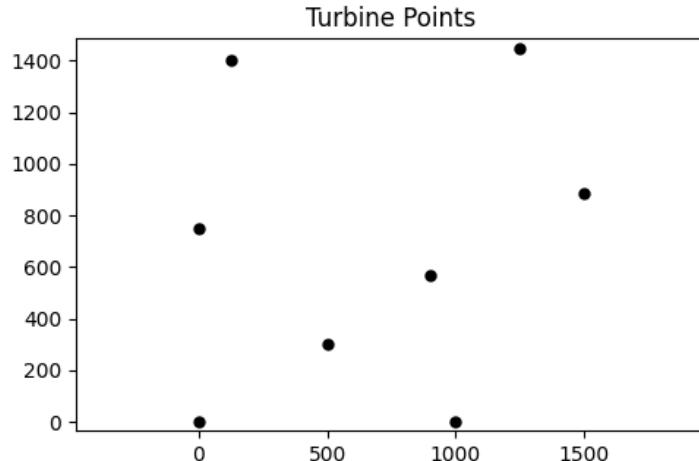
$$E = h \sum_{v, \phi} P(v, \phi) p_V(v, \phi)$$

The diagram illustrates the components of the AEP equation. The equation is $E = h \sum_{v, \phi} P(v, \phi) p_V(v, \phi)$. Below the equation, five labels are aligned with blue arrows pointing to specific parts:

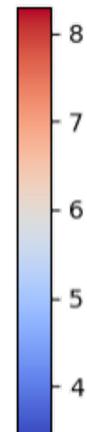
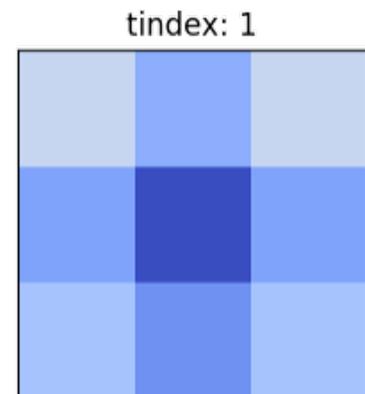
- Annual energy production (Wh) points to the term E .
- Hours per year points to the term h .
- Sum over all WS/WD combinations points to the summation symbol \sum .
- Farm power points to the term $p_V(v, \phi)$.
- Frequency of occurrence points to the term $P(v, \phi)$.

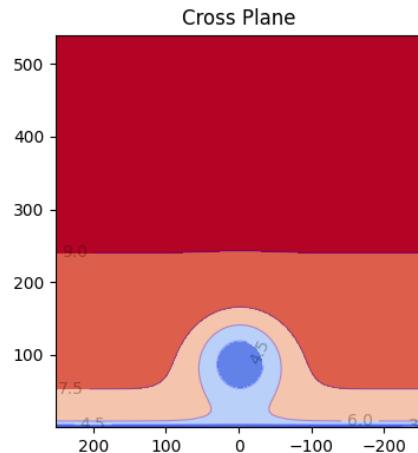
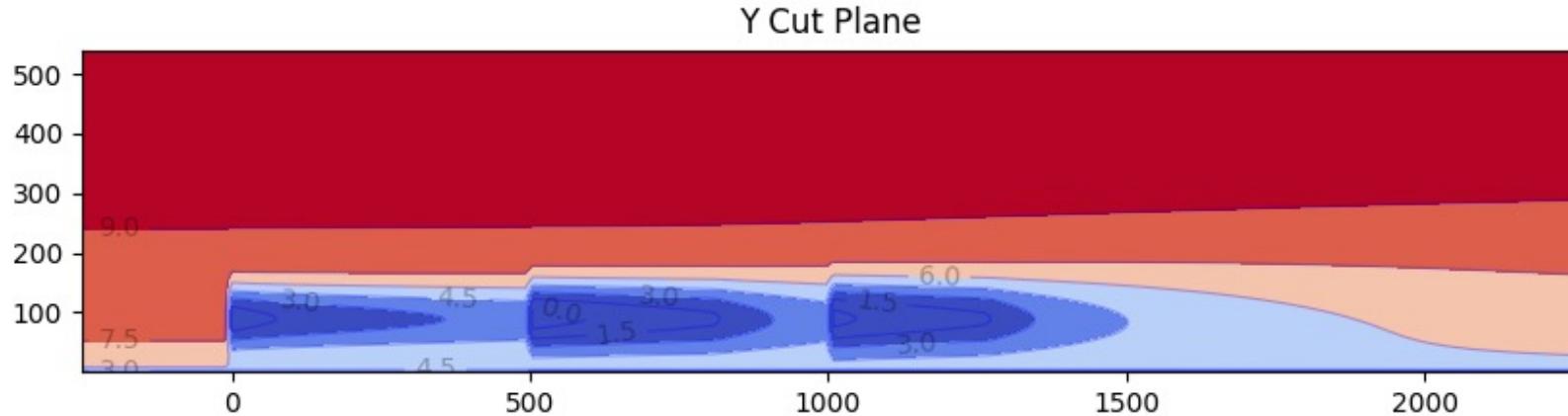
```
AEP = FlorisModel.get_farm_AEP()
```

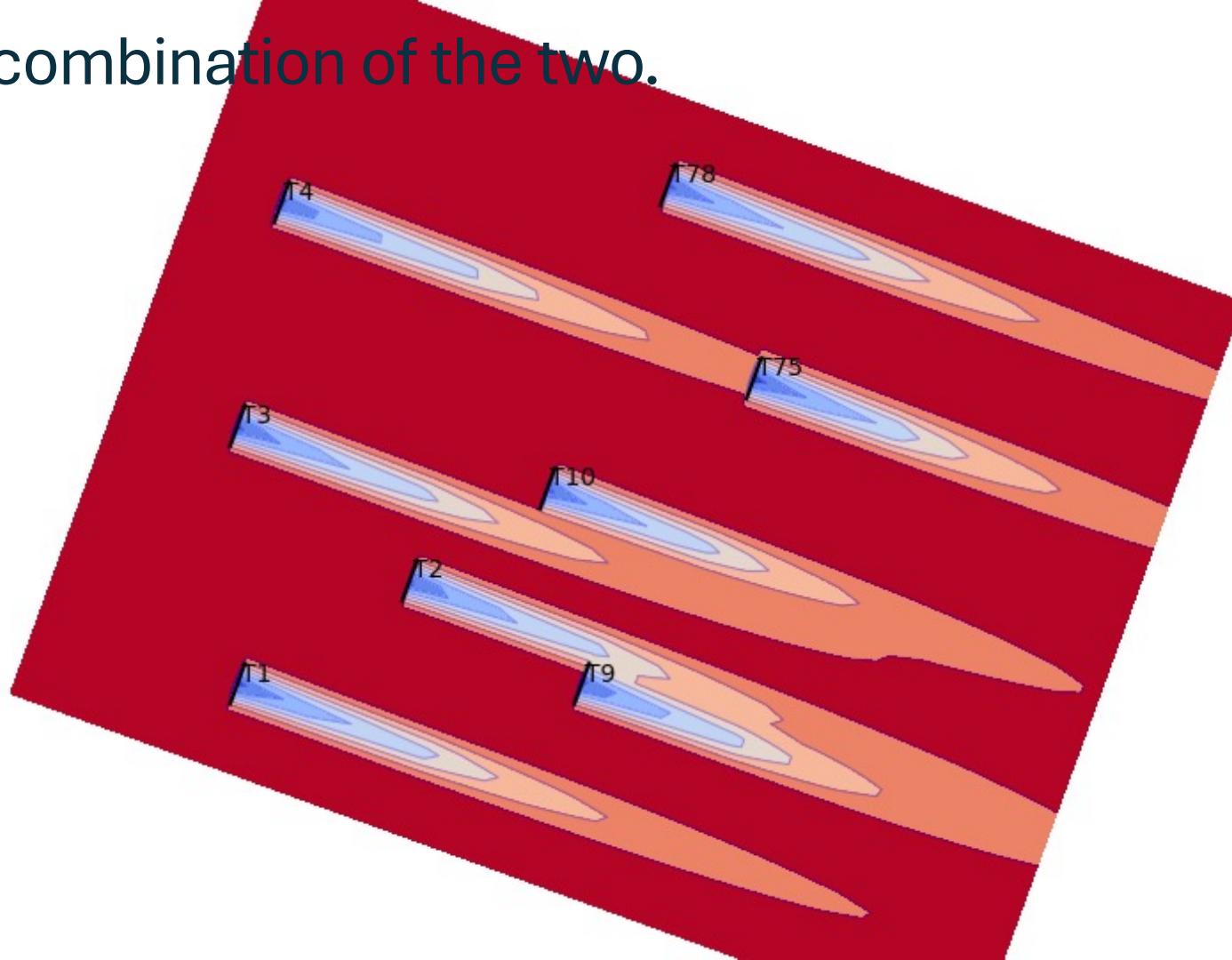
Once a model has been run, the farm AEP can be computed using inbuilt FLORIS methods which perform a weighted sum:





$$E = h \sum_{v, \phi} P(v, \phi) p_V(v, \phi)$$

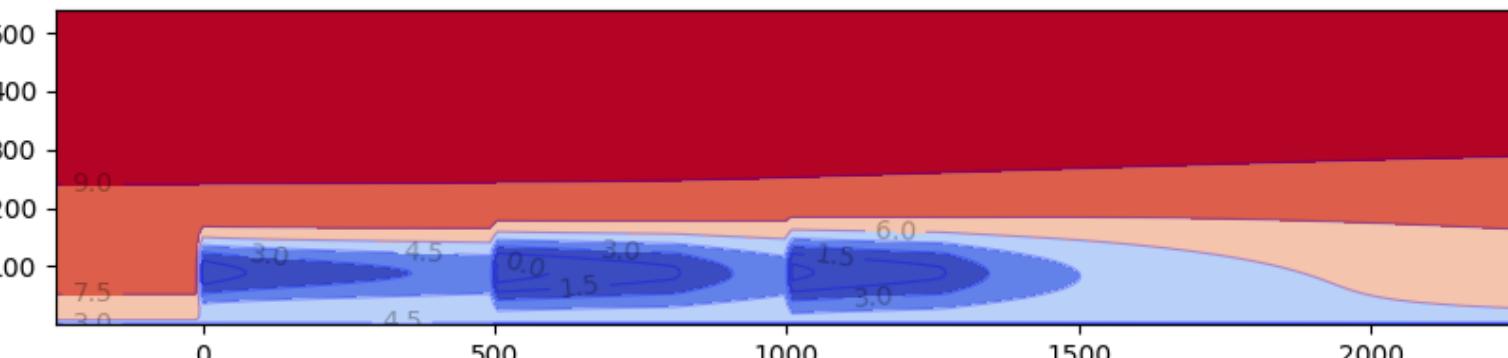
Note: user may specify a single TI per WS/WD combination (WindRose) or a third dimension for all combinations of WS/WD/TI (WindTIRose).



Visualization


FLORIS has various tools for layout visualization,

flow visualization,


or a combination of the two.

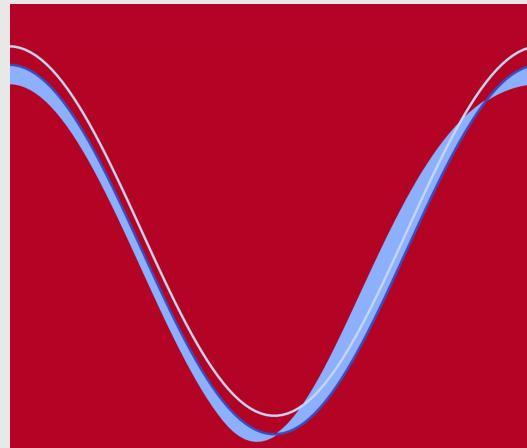

```
1  """Example: Visualize y cut plane
2
3 Demonstrate visualizing a plane cut vertically through the flow field along the wind direction.
4
5 """
6
7 import matplotlib.pyplot as plt
8
9 from floris import FlorisModel
10 from floris.flow_visualization import visualize_cut_plane
11
12
13 fmodel
14
15 # Set a
16 fmodel.
17 # lay
18 # lay
19 # win
20 # win
21 # tur
22 #)
23
24 # Colle
25 y_plane
26
27 # Plot
28 fig, ax
29 visualize_cut_plane(
30 |----y_plane, ax=ax, min_speed=3, max_speed=9, label_contours=True, title="Y Cut Plane"
31 )
32
33 plt.show()
```

examples/
examples_visualization/
002_visualize_y_cut_plane.py

Y Cut Plane

SCADA filtering

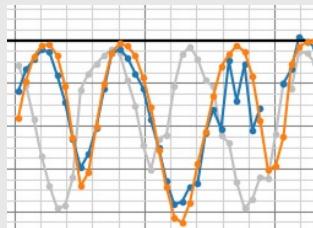
Bias correction


Uplift analysis

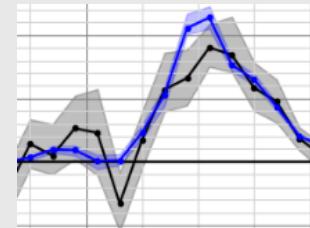
Model fitting

FLASC

<https://github.com/NREL/flasc/>

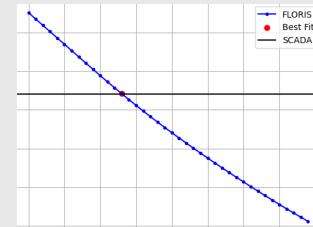

SCADA filtering

Filtering and outlier detection for power curves


- Abnormal conditions
- Abnormal operation
- Stuck sensors

Bias correction

Correction of northing bias (yaw encoder bias) via wake position comparison


Uplift analysis

Comparison of power and energy production between two or more test cases

- Energy ratio
- Total uplift

Model fitting

Parameter fitting for FLORIS turbine and wake models to SCADA records

Coming soon...

- FLORIS wake model parameters
- Wind dir. variability

Thank you

www.nrel.gov

michael.sinner@nrel.gov

This work was authored by NREL for the U.S. Department of Energy (DOE), operated under Contract No. DE-AC36-08GO28308. The views expressed in this presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

