# How to list existing time series data Suppose that you have added multiple time series arrays to your components using differing names and attributes. How can you see what is present? This example uses a test module in the `infrasys` repository. The call to `system.add_time_series` returns a key. You can store those keys yourself or look them up later with `system.list_time_series_keys`. Here's how to do it. ```python from datetime import datetime, timedelta import numpy as np from infrasys import SingleTimeSeries from tests.models.simple_system import SimpleSystem, SimpleGenerator, SimpleBus system = SimpleSystem() bus = SimpleBus(name="test-bus", voltage=1.1) gen = SimpleGenerator(name="gen", active_power=1.0, rating=1.0, bus=bus, available=True) system.add_components(bus, gen) length = 10 initial_time = datetime(year=2020, month=1, day=1) timestamps = [initial_time + timedelta(hours=i) for i in range(length)] name = "active_power" ts1 = SingleTimeSeries.from_time_array(np.random.rand(length), name, timestamps) ts2 = SingleTimeSeries.from_time_array(np.random.rand(length), name, timestamps) key1 = system.add_time_series(ts1, gen, scenario="low") key2 = system.add_time_series(ts2, gen, scenario="high") # Use the keys directly. ts1_b = system.get_time_series_by_key(gen, key1) ts2_b = system.get_time_series_by_key(gen, key2) # Identify the keys later. for key in system.list_time_series_keys(gen): print(f"{gen.label}: {key}") ``` ``` SimpleGenerator.gen: name='active_power' initial_time=datetime.datetime(2020, 1, 1, 0, 0) resolution=datetime.timedelta(seconds=3600) time_series_type= user_attributes={'scenario': 'high'} length=10 SimpleGenerator.gen: name='active_power' initial_time=datetime.datetime(2020, 1, 1, 0, 0) resolution=datetime.timedelta(seconds=3600) time_series_type= user_attributes={'scenario': 'low'} length=10 ``` You can also retrieve time series by specifying the parameters as shown here: ```python system.time_series.get(gen, name="active_power", scenario="high") ``` ``` SingleTimeSeries(name='active_power', normalization=None, data=array([0.29276233, 0.97400382, 0.76499075, 0.95080431, 0.61749027, 0.73899945, 0.57877704, 0.3411286 , 0.80701393, 0.53051773]), resolution=datetime.timedelta(seconds=3600), initial_time=datetime.datetime(2020, 1, 1, 0, 0), length=10) ```